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a b s t r a c t 

The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new chal- 

lenges to the research community. Although governments imposing numerous containment and social 

distancing measures, the need for the healthcare systems has dramatically increased and the effective 

management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term 

forecasting of the number of new contaminated and recovered cases is crucial for optimizing the avail- 

able resources and arresting or slowing down the progression of such diseases. Recently, deep learning 

models demonstrated important improvements when handling time-series data in different applications. 

This paper presents a comparative study of five deep learning methods to forecast the number of new 

cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory 

(L STM), Bidirectional L STM (BiL STM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) al- 

gorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. 

This study is based on daily confirmed and recovered cases collected from six countries namely Italy, 

Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learn- 

ing model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to 

the other algorithms. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

At the end of 2019, a new coronavirus called Corona-virus Dis-

ase 2019 (COVID-19) has appeared in Wuhan city in China. Re-

ently, the COVID-19 is flagged out a pandemic by the World

ealth Organization on March 11th, after over-passing 118,0 0 0

ases in over 110 countries at that time. This disease has exponen-

ially spread over all the world and highly impacted healthcare sys-

ems in many countries, such as Italy, Spain, France, and the United

tates. In fact, increased demand for healthcare generated large

ows of patients leads to hospital bed shortages and strain situ-

tions in hospitals. Accurately modeling and forecasting the spread

f confirmed and recovered COVID-19 cases is vital to understand

nd help decision-makers to slowdown or arrest its spreading [1–

] . 
∗ Corresponding author. 
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Today, COVID-19 pandemic is one of the most serious problems

onfronting our modern world because of its highly negatively af-

ects public health [4] . Its impact is noticeable on sensitive popula-

ions, including the elderly and peoples with chronic diseases, such

s asthmatics. Therefore, it becomes a multidisciplinary issue that

nvolves both the epidemiological experts, pharmaceutical indus-

ry, specialists in modeling diagnosis systems, and local authorities.

his paper is within the framework of modeling and forecasting of

OVID-19 time-series data. 

With the appearance and spreading of COVID-19, a big chal-

enge of researches has been witnessed in several science domains

round the world to slowdown or arrest the increasing trends of

he spread of this disease. Thereby, to understand and manage

his epidemic, various modeling, estimation, and forecasting ap-

roaches are introduced. For instance, several mathematical mod-

ls are applied to estimate and forecast the evolution of confirmed

nfected cases [5,6] . In susceptible exposed infectious recovered

odel (SEIR) models, the flows of people are categorized in four

tates according to the states of individuals: S (Susceptible), E (Ex-

https://doi.org/10.1016/j.chaos.2020.110121
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110121&domain=pdf
mailto:fouzi.harrou@kaust.edu.sa
https://doi.org/10.1016/j.chaos.2020.110121
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posed), I (Infected), and R (Remove) [7] . Very recently, in [8] , a

method based generalized SEIR model has been developed by in-

corporating quarantined and recovery states to predict and analyze

the COVID-19 epidemic. In [9] , both of SEIR and SIR models are

applied to model the predictions and representing the confirmed

cases data information. It has been shown that the SIR model out-

performs the SEIR model in terms of Akaike Information Criteria

(AIC). In [10,11] , another extended SIR version has been developed

by introducing the number of reported and unreported cases in

the prediction of the number of the reported cumulative cases.

In [12] , the SIR model is extended on the euclidean network to

enhance the prediction quality of confirmed cases and illustrate

the key role of the spatial factor in the epidemic propagation. In

[13] three phenomenological models namely generalized logistic

growth model (GLM), Richards growth model, and sub-epidemic

wave model are proposed for short term forecasting of the number

of confirmed cases. Specifically, the GLM model is used to capture

the sub-exponential growth dynamics, the Richards model han-

dles the deviation between the symmetric logistic curve, and the

sub-epidemic wave model is introduced for the complex trajecto-

ries. Other studies have investigated using different models for un-

derstanding the epidemic spread. In [7] , Logistic, Bertalanffy, and

Gompertz models have been applied to fit and analyze epidemic

predictions. The logistic model showed better prediction perfor-

mance compared to the two other considered models. However,

the major limitations of these three models are their restricted ap-

plicability only on some outbreak stages and with the availabil-

ity of enough data. To alleviate this shortcoming, in [14] , gener-

alized versions are proposed by including additional parameters

on the previous models. These improved versions permit to in-

crease the analysis features as the documentation of the four epi-

demic phases (early stage, fast-growth phase, slow growth phase,

and outbreak ends) and the identification of the high risk in es-

timated confirmed cases. In [15] , a discrete-time stochastic model

is developed to describe the dynamic of the epidemic spread. This

model demonstrated the capacity to capture the epidemiological

status [15] . Other studies applied time-series methods, such as

Auto-Regressive Integrated Moving Average (ARIMA) to forecast the

number of confirmed cases [16] . In [17] , a traditional ARIMA mod-

eling and Exponential Smoothing methods have applied to analyze

and forecast the trends of the COVID-19 outbreak in India. In [18] ,

the ARIMA model, which is suitable in describing short-term au-

tocorrelation in time series data, is applied to forecast registered

and recovered COVID-19 cases after sixty-day lock-down in Italy.

Various previous studies based on traditional time series forecast-

ing models have been explored to forecast future COVID cases in

China and a few other countries, see [19–21] . 

Accurate forecasting of the number of COVID-19 cases is becom-

ing the backbone to facilitate the use of the available resources in

hospitals and improve management strategies to optimally man-

age infected patients. Recently, machine learning and deep learn-

ing have emerged as a promising field of research in a wide range

of applications, both in academia and industry [1,22] . In [23] , four

supervised machine learning algorithms namely linear regression,

LASSO regression, Exponential Smoothing (ES), and Support Vec-

tor Machine (SVM) have been applied to predict COVID-19 Future.

It has been shown that ES outperformed other models in predict-

ing the number of newly contaminated cases, the number of re-

coveries, and the number of deaths. This is mainly due to the ca-

pacity of ES in handling time-series data by including information

from past data in the prediction process. The study in [24] showed

that Machine Learning and cloud computing provided promise so-

lutions in improving the prediction of the growth of the epidemic

proactively. In [25] , a deep learning approach based on Long short-

term memory (LSTM) is investigated in the forecasting of COVID-

19 transmission in Canada, Italy, and the USA. Results showed the
STM achieved good forecasting performance due to its capacity in

andling time-dependent datasets. In [26] , a stacked auto-encoder

odel is introduced to fit the dynamical propagation of the epi-

emic and real-time forecasting of confirmed cases in China. In

27] a shallow Long short-term memory is proposed to predict the

isk category, trend, and weather data are used as input for the

rediction. See, for instance [28] for more details about intelligent

omputing-based research for COVID-19. 

Still within the deep learning techniques, this paper is aimed at

resenting a comparative study between the five most advanced

ata-driven forecasting methods in forecasting COVID 19 cases.

ere, the forecasting is performed for two the number of con-

rmed cases and the number of the recovered cases with the fore-

asting horizon of 17 days. Essentially, five deep learning models

amely simple Recurrent Neural Network (RNN), Long short-term

emory (LSTM), Bidirectional LSTM (BiLSTM), Variational Auto En-

oder (VAE) and Gated recurrent units (GRUs) are applied and

ompared to forecast the time series of the number of new af-

ected COVID 19 cases and recovered cases. These models have

any attractive features, such as handling temporal dependencies

n time series data, distribution-free learning models, and their

exibility in modeling nonlinear features. To the best of our knowl-

dge, the VAE model has not been investigated before for COVID-

9 forecasting. The deep learning models have been evaluated on

he publically available COVID-19 patient stats dataset provided by

ohns Hopkins recorded from the starting of COVID-19 till June 17,

020. Data from five highly impacted countries are considered in

his study: Italy, Spain, France, the USA, China, and Australie. 

Section 2 provides a brief presentation of the simple RNN, GRU,

 STM, BiL STM and VAE modeling and how they can be employed

n forecasting. Section 3 presents the involved COVID-19 dataset

nd discusses the models fitting results and comparisons. Lastly,

onclusions are drawn in Section 4 . 

. Materials and methods 

.1. Deep learning models 

Deep learning techniques demonstrated important performance

mprovements in different applications in the literature. This sec-

ion is devoted to briefly describe the basic principle of six deep

earning models that will be used later for COVID-19 time-series

orecasting namely RNN, LSTM, Bi-LSTM, GRU, and VAE. 

.1.1. Recurrent neural networks 

Regular feedforward neural networks have been widely used

ith success in numerous fields. In such networks, data flow trans-

ormations are passed via hidden layers in one direction where

he output is influenced only with the current situation. How-

ver, these neural networks possess less memory and are not suit-

ble for modeling data sequencing, and time dependencies in his-

orical data. To bypass this limitation, recurrent neural networks

RNNs) have been developed to handle time-dependent learning

roblems [29] . The basic essence in RNNs is to consider the in-

uence of past information for generating the output. To this end,

ells represented by gates influencing the output using historical

bservations are included to generate the output. Fig. 1 displays

 schematic illustration of RNNs. Indeed, a chunk of a neural net-

ork, A , looks at some input x t and provides a value h t . Essentially,

NNs are efficient for learning temporal information [30] . In RNN,

 hidden state h t can be computed for a given an input sequence

 = (x 1 , x 2 , . . . , x t ) , as: 

 t = 

{
0 t = 0 

ϕ(W x t , x t ) otherwise , 
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Fig. 1. Schematic presentation of RNN. 
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den states in RNN models. The GRU enhanced the LSTM structure 

F

m

here ϕ is a non-linear function. The recurrent hidden state is up-

ated as follows 

 t = g(W x t + uh t−1 ) , (1)

here g is a hyperbolic tangent function (tanh ). 

There are two powerful RNN models that are efficient for time-

ependent in time-series data namely: LSTM and GRU. These deep

earning models have shown considerable success in modeling and

orecasting compared to the classical time series models and tradi-

ional networks have demonstrated that they can reach good re-

ults in many application domains with time series [31,32] . The

asic architectures of LSTM and GRU models are illustrated in

ig. 2 (a-b). 

.1.2. LSTM models 

LSTM is a sophisticated gated memory unit designed to mitigate

he vanishing gradient problems limiting the efficiency of a simple

NN [29] . More specifically, in the case of the significant time step,

he gradient becomes too small or large, which results in a van-

shing gradient problem. This problem appears during the training,

here the optimizer backpropagates and makes the procedure run,

hile the weights almost do not change at all. Essentially, LSTM

ossesses three gates controlling the information flow termed in-

ut, forge, and output gates. Basically, these gates are formed sim-

ly with logistic functions of weighted sums; the weights can be

btained during training by backpropagation. The cell state is man-

ged via the input gate and the forget gate. The output is gener-

ted from the output gate or the hidden state, which represents

he memory directed for use. This mechanism allows the network

emorizing for a long time which is missed the conventional sin-

le RNNS. Of course, The desirable characteristics of LSTM are their

xtended capacity to capture long-term dependencies and great

bility to handle time-series data. Given the input time-series X t ,

nd the number of hidden units as h , the gates have the following

quations: 

• Input Gate: I t = σ (X t W xi + H t−1 W hi + b i ) , 
• Forget Gate: F t = σ (X t W x f + H t−1 W h f + b f ) , 
• Output Gate: O t = σ (X t W xo + H t−1 W ho + b o ) , 
• Intermediate Cell State: ˜ C t = tanh (X t W xc + H t−1 W + b c ) , 
hc 

ig. 2. Basic structure of LSTM and GRU models. (a) I t , F t , and O t represent the three LSTM

emory cells and memory cell content. (b) R t and Z t are reset gate and update gates resp
• Cell State (next memory input) C t = F t ◦ C t−1 ◦ ˜ C t , 
• New State: H t = O t ◦ tanh (C t ) , 

here 

• W xi , W xf , W xo and W hc , W hf , W ho refer respectively to the weight

parameters and b i , b f , b o denote bias parameters. 
• W xc , W hc denote weight parameters, b c is bias parameter, o re-

fer to the element-wise multiplication. The estimation of C t de-

pends on the output information’s from memory cells ( C t−1 )

and the current time step 

˜ C t . 

.1.3. Bidirectional LSTM 

A bi-directional LSTM (BiLSTM) is an enhanced version of the

STM algorithm. As discussed above, in the LSTM, the current

tate can only be reconstructed according to the backward context.

owever, the forward context also presents a relationship with the

ctual state, which is not considered in the LSTM model. To deal

ith this handicap and for more accuracy in state reconstruction,

he bidirectional L STM (BiL STM) algorithm has been introduced by

erging the desirable features of the bidirectional RNN [33] with

hose of the LSTM [34] . This has been done by combining two hid-

en states, which allow the information to come from the back-

ard layer as well as from the forward layer. 

Fig. 3 (a) presents the bidirectional RNN architecture. Wherein,

he forward, backward and output sequences are given as follow-

ng: 

• Forward hidden: 
−→ 

H t = L (X t W 

x 
−→ 

H 
+ 

−→ 

H t−1 W 

−→ 

H 
−→ 

H 
+ b −→ 

H 
) , 

• Backward hidden: 
← −
H t = L (X t W 

x 
← −
H 

+ 

← −
H t−1 W 

← −
H 

← −
H 

+ b ← −
H 

) , 

• Output : Y t = 

−→ 

H t W 

−→ 

H Y 
+ 

← −
H t W 

← −
H Y 

+ b Y , 

here L is the sigmoid function application, which considered as

STM unit in the BiLSTM architecture ( Fig. 3 (b)). 

The BiLSTM is helpful for situations requiring context input. It

as been widely used in classification, especially in text classifi-

ation [35] , sentiment classification [36] and speech classification

nd recognition [37] . In addition, the Bi-LSTMs are used in PM2.5

oncentration prediction [38] , and Load forecasting [39] . 

.1.4. GRU models 

GRU is basically an alternative LSTM version that is proposed in

40] for improving the LSTM performance and reduce the number

f LSTM parameters and make its design less complicated. In GRU,

he input gate and forget gate from the LSTM model have been

erged in only one gate called update gate ( Fig. 2 ). There only

wo gates in GRU, update and reset gates, instead of three gates

n LSTM. The proposition of the reset and update gates concepts

re among the new benefits brought by GRUs models. This latter,

ffer a new assessment method that allows the calculation of hid-
 gates (input, forget and output gates respectively), C and ˜ C represent the candidate 

ectively, H t and ˜ H t are the candidate hidden state and hidden state respectively. 
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Fig. 3. Schematic representation of (a) Bidirectional RNN structure and (b) Bidirectional LSTM architecture. 

Fig. 4. Schematic representation of Variational Autoencoders architecture. 
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through the coupling of the input and forget gates of the LSTM

by the update gate and using the output gate as a reset gate. The

update gate provides the quantity of previously kept memory and

the reset gate ensures the combination way between actual (new

inputs) and previous memory. The mathematical relationships be-

tween the various GRU components are given by: 

• Update gate: Z t = σ ( X t W xz + H t−1 W hz + b z ) , 
• Reset gate: R t = σ ( X t W xr + H t−1 W hr + b r ) , 
• Cell state: ˜ H t = tanh ( X t W xh + ( R t ◦ H t−1 ) W hh + b h ) , 
• New state: H t = Z t ◦ H t−1 + ( 1 − Z t ) ◦ ˜ H t , 

where 

• W xr , W xz and W hr are weight parameters and b r , b z are bias pa-

rameters. 
• W xh , W hh are weight parameters and b h is a bias parameter. For

a given time step t , the current update gate Z t is used to com-

bine the previous hidden state H t−1 and current candidate hid-

den state ˜ H t . 

2.1.5. Variational autoencoders 

The variational autoencoders (VAE) belong to generative models

that use learned approximate inference and could be constructed

based on gradient-based techniques [41,42] . Variational in this con-

text refers to the variational inference method used in statistics.

Basically, the VAE is considered as an autoencoder whose training

is regularised to bypass the overfitting problem and establish a la-

tent space with suitable properties enabling the generative process.

Fig. 4 illustrates a basic schematic representation of the architec-

ture of a VAE. Similar to a traditional autoencoder, a VAE contains

both an encoder and a decoder. The training of a VAE is done by

minimizing the reconstruction error of the encoded-decoded data

and the original input data. At first, the VAE encodes the input

data, X as distribution, q( z | x ) via the latent space. Then, a sample,

z ~ q( z | x ), is generated from the code distribution. Finally, the sam-

pled point is decoded p ( x | z ) and the reconstruction error is calcu-

lated and backpropagated through the network. 

The key insight behind VAE is to minimize the loss function,

L (q ) , during the training stage. The loss function contains in addi-
ion to reconstruction term (on the output layer) that tries making

he encoding-decoding process as efficient as possible, a regulari-

ation term (on the latent layer) that regularizes the structure of

he latent space by ensuring that the distributions obtained from

he encoder closer to a specified distribution which is usually cho-

en Gaussian distribution. 

 (q ) = E z ∼q(z | x ) 
(
logp(x | z ) )︸ ︷︷ ︸ 

Reconstruction term 

− KL 
(
q(z | x ) || p(z ) 

)︸ ︷︷ ︸ 
Regularization term 

, (2)

he term is the reconstruction loss, E z ∼q(z | x ) 
(
logp(x | z ) ), helps the

ecoder learning the reconstruction of the data. Inadequate recon-

truction will lead to a large cost in the loss function. On the other

and, the regularization term is represented as the Kulback-Leibler

ivergence (KL) between the encoder’s distribution, q( z | x ) and a

rior of the latent variable z , |p( z ). The KLD quantifies the loss

hen using q to represent p . In other words, in the training step,

he minimization of the loss function is done to ensure the regular-

zation of the latent space and consist of two terms, the first term

enalizes reconstruction error while the second term encourages

he learned distribution q ( z | x ) to be close to the true prior distri-

ution p ( z ), resulting on a regular latent space z and more suitable

or sampling new observation using z ~ p ( x | z ), such as new images

r music generation. 

Due to its simplicity, flexibility, and easy to implement, the VAE

ramework has been extended to other model architectures. For in-

tance, one sophisticated extension of VAE is the deep recurrent

ttention writer (DRAW) [43] . Specifically, DRAW is performed by

ombining a recurrent encoder and recurrent decoder and an at-

ention mechanism [43] . Also, VAE has been extended for generat-

ng sequences by introducing variational RNNs that use a recurrent

ncoder and decoder within the VAE framework [44] . 

.2. Evaluation metrics 

The NN-based forecasting models were evaluated using the fol-

owing indexes: Root Mean Square Error (RMSE), mean absolute

ercentage error (MAPE), mean absolute error (MAE), explained
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Fig. 5. Conceptual framework of the proposed forecasting methods. 
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ariance (EV), and Root Mean Squared Log Error (RMSLE). 

MSE = 

√ 

1 

n 

n ∑ 

t=1 

(y t − ˆ y t ) 2 , (3) 

AE = 

∑ n 
t=1 

∣∣y t − ˆ y t 
∣∣

n 

, (4) 

AP E = 

100 

n 

n ∑ 

t=1 

∣∣∣y t − ˆ y t 

y t 

∣∣∣% , (5)

V = 1 − Var( ̂ y − y ) 

Var (y ) 
, (6) 

MSLE = 

√ 

1 

n 

n ∑ 

t=1 

( log (y t ) − log ( ̂  y t )) 2 , (7) 

here y t are the actual values, ˆ y t are the corresponding estimated

alues, and n is the number of measurements. Here, we use the
Fig. 6. (a) Total confirmed contaminated COVID-19 cases and (b) COV
MSLE indicator because it is widely used for evaluating model

uality in regression problems and as a score indicator in many

ata science challenges. Basically, it is similar to RMSE but calcu-

ated at the logarithmic scale. The benefit of using RMSLE as the

tatistical indicator is that its great robustness to outliers. Lower

MSE, MAE, or MAPE values and EV closer to 1 represent more ac-

urate forecasting performances. Furthermore, we shall investigate

he distribution of forecasting errors via histograms. 

.3. Deep learning-based COVID-19 forecasting 

This study proposes a deep-learning framework for COVID-19

ime-series forecasting. Five deep learning models have been ap-

lied to forecast daily conrmed and recovered cases. The general

ramework of the forecasting proposed strategies is illustrated in

ig. 5 . The COVID-19 forecasting has been done two main stages:

raining and testing. In the first stage, the raw data is preprocessed

nd standardized and then it is used to construct the deep learn-

ng model. The values of parameters of deep learning models are

elected such that the loss function is minimized during the train-

ng. Here, Adam optimizer is used for this purpose. After that, in

he testing stage, the previously constructed models with the se-

ected parameters are used to forecast the number of COVID cases.

he accuracy of the model will be verified by comparing the mea-

ured data with real data via different statistical indicators includ-

ng RMSE, MAE, MAPE, and RMSLE. 

The key underlying idea of this study is to investigate the ca-

acity of the deep learning models RNN, LSTM, BiLSTM, GRU and

AE in forecasting the number of COVID-19 cases in the presence

f a limited sized dataset. 

. Results and discussion 

.1. Data description 

The COVID-19 disease has been reported by the WHO in around

10 countries and territories worldwide. In particular, many coun-

ries of Europe and North America suffer from a large COVID-19

utbreak. The role of large air traffic between Asia, North America,

nd Europe has significantly facilitated the propagation of COVID-

9 from its origin to the other infected countries; person-to-person

pread was subsequently reported among close contacts of re-

urned travelers. The main objective of the herein study is aimed

t the COVID 19 forecasting and prediction of the epidemic spread-

ng. This study is based on daily figures of confirmed and recovered

ases collected from six highly impacted countries namely Italy,

pain, Italy, China, the USA, and Australia. The considered datasets
ID-19 deaths in Italy, Spain, France, USA, China, and Australia. 
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Table 1 

Summary of the considered COVID-19 datasets. 

Min Max STD Q-0.25 Q-0.5 Q-0.75 Skew Kurtosis 

Conf-Italy 0 237,828 98930.476 771.5 126,790 220,515 -0.035 1.247 

Reco-Italy 0 179,455 62803.598 45.5 21405.5 107,813 0.772 2.025 

Conf-Spain 0 244,683 104976.13 23.5 128,907 227,733 -0.009 1.177 

Reco-Spain 0 150,376 64187.728 2 36149.5 138059.5 0.348 1.364 

Conf-France 0 189,906 81621.764 47.5 69541.5 175,730 0.101 1.170 

Reco-France 0 70,223 27876.933 11 15810.5 56,093 0.349 1.400 

Conf-China 548 84,458 23640.122 78,764 82572.5 84014.5 -2.146 6.081 

Reco-China 28 79,510 30217.499 34629.5 77076.5 79,210 -1.038 2.338 

Conf-Australia 0 7391 3257.1966 15 5618.5 6975 -0.185 1.144 

Reco-Australia 0 6877 2965.836 11 729 6241.5 0.344 1.243 

Conf-USA 1 2,163,290 747576.74 20 351559.5 1,363,938 0.588 1.796 

Reco-USA 0 592,191 184097.64 6.5 16,050 231,510 1.206 3.034 

Fig. 7. ACF of confirmed and covered COVID-19 time-series datasets in the consid- 

ered countries. 
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are gathered from the starting of COVID-19 for the respective coun-

tries (22 January 2020) till June 17th, 2020. These datasets are

made publically by the Center for Systems Science and Engineer-

ing (CSSE) at Johns Hopkins University 

(https://github.com/CSSEGISandData /COVID-19 accessed on

17/06/2020). 
Fig. 8. Convergence of the loss function of RNN, L STM, Bi
.2. Data analysis and modeling 

The first step to getting a better understanding of the COVID-19

ata, the daily contaminated cases with the COVID-19 since its ap-

earance until June 17, 2020, is displayed in Fig. 6 . It can be seen

hat this disease exponentially increased since its appearance and

eached a high number of confirmed cases of 8349950, recovered

ases 4073955, and deaths 448959. Due to the limited testing, the

umber of total cases is expected to be higher than the number of

ases. The total number of U.S. coronavirus (COVID-19) deaths as

f June 17, 2020, reaches 117,717 deaths, which is the United States

he most affected country by this epidemic ( Fig. 6 ). As shown in

ig. 6 Italy, Spain, and France are most affected European countries

y the COVID-19, which shows a high growth with very quickly

pidemic propagation with a high number of deaths that exceeds

he threshold of 20,0 0 0 deaths. At the same time, it presents a

onsiderable number of recovered persons. With the same pace as

he previous European countries, recently, the United States Amer-

can has presented a high increase of confirmed affected persons

ith less number of recovered and deaths. Australia is a country

hat has a considerable number of virus infections. However, com-

ared with other countries it presents a remarkable number of re-

overed persons with the fewest deaths cases. 

Table 1 gives a summary of each univariate time series used

n this study. Here, the asymmetry and flatness of the traffic dis-

ribution are checked via the skewness and kurtosis statistics, re-

pectively. Generally speaking, kurtosis with a value 3 is an in-
-L STM, GRU, and VAE models during training stage. 
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Fig. 9. Real and forecasted confirmed COVID19 cases using RNN, LSTM, BiLSTM, GRU and VAE (training and testing dataset) for (a) Italy, (b) France, (c) Spain, (d) China, (e) 

USA and (f) Australia. The orange band represent the forecast horizon. 
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Table 2 

Parameter settings of the studied approaches. 

Models Parameter Value 

Visible units 05 

Latent dimension 16 

VAE Learning rate 0.0005 

Training epochs 1000 

Layers 02 

RNN Learning rate 0.0005 

Timestep 05 

Features 01 

Hidden units 16 

Training epochs 1000 

GRU Learning rate 0.0005 

Timestep 05 

Features 01 

Hidden units 16 

Training epochs 1000 

LSTM Learning rate 0.0005 

Timestep 05 

Features 01 

Hidden units 16 

Training epochs 1000 

BiLSTM Learning rate 0.0005 

Timestep 05 

Features 01 

Hidden units 16 

Training epochs 1000 
icator of Gaussian distribution. A kurtosis with a value 3 is an

ndicator of more peaked distribution than the Gaussian distribu-

ion and kurtosis less than 3 characterizes distributions that are

atter than Gaussian distribution. Moreover, the skewness statis-

ic is computed to checking the asymmetry of the data distribu-

ion around the sample mean. Importantly, we recognize a skewed

istribution to the left side by a skewness with a negative value

nd a distribution skewed to the right side by positive skewness.

ore information related to the location and spread of the dataset

an be extracted using the other statistics including the standard

eviation and quartiles. We can conclude from Table 1 that the

onfirmed and covered COVID-19 datasets are non-Gaussian dis-

ributed with positive support and exhibit a wide range of stan-

ard deviations. 

To verify the nonstationary and time-dependent behavior of

OVID-19 time series data, the autocorrelation function (ACF) of

onfirmed and recovered daily cases is computed for each consid-

red country ( Fig. 7 ). Essentially, ACF is a time-domain metric that

s able to quantify the stochastic process memory. Generally, for a

ignal, x t , the ACF is expressed as, 

k = 

cov ( x t , x t−k ) √ 

var ( x t ) var ( x t−k ) 
(8) 

Fig. 7 indicates the presence of relatively short-term autocor-

elation in the studied COVID-19 time series data. Also, it can be
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Fig. 10. Measured and forecasted confirmed COVID19 cases from 14 April to 21 April 2020 using RNN, L STM, BiL STM, GRU and VAE for (a) Italy, (b) France, (c) Spain, (d) 

China, (e) USA and (f) Australia. 
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observed the high similarity between the ACFs from the majority

of data except the data recorded from the USA and Australia. This

may be explained by the high spread of COVID-19 in the USA com-

pared to the other countries and also low spread in Australia com-

pared to the other high impacted countries (Italy, Spain, Italy, and

China). 

Five deep learning models will be used to handle the COVID-

19 time-series datasets. It should be noted that the gated architec-

tures RNN, LSTM, BiLSTM, GRU and VAE, owing to its data-driven

approaches, are assumption-free regarding the underlying distribu-

tion of data. Also, they are very efficient in extracting relevant in-

formation from time-dependent data. 

3.3. Forecasting results 

This section will compare the forecasting performances of sev-

eral neural networks time series forecasting models namely RNN,

GRU, LSTM, BiLSTM and VAE. In this study, we focus on the uni-

variate time-series data of daily conrmed and recovered cases from

six considered countries Italy, Spain, France, the USA, China, and

Australia. First, each model is trained with the training measure-

ments. Then, we forecast each variable using the trained models

for the unseen testing dataset. The training data consist of univari-

ate time series data of confirmed and recovered cases from Jan-

uary 22, 2020, through May 31, 2020. Here, the challenge in this
tudy is to investigate the performance of these five deep learning

odels in the presence of relatively small data. Parameters of the

onstructed RNN, LSTM, BiLSTM, GRU, and VAE models based on

raining datasets are presented in Table 2 . 

Fig. 8 displays the evolutions the loss function as a function

f the number of epochs in RNN, LSTM, Bi-LSTM, GRU, and VAE

uring the training stage. It can be seen that the three mod-

ls (RNN, LSTM, and GRU) converge very quickly and the RNN is

elatively faster than the other models followed by GRU. This is

ainly due to the fact that the RNN is a simple model and the

RU use directly all hidden states without control, and presents

ewer computational parameters compared to L STM, Bi-L STM and

AE. 

.4. Forecasting new contaminated cases 

Now, the forecasting quality of the previously designed models

ill be verified using unseen testing data. The testing data con-

ists of confirmed and recovered COVID-19 cases recorded in the

ix considered countries from 1st June to 17th June 2020. Fig. 9 (a–

) shows the forecasting results of the confirmed COVID-19 cases

n the six consider countries using the five deep learning models.

hese models show good forecasting performance in the testing

tage. To more clearly compare the forecasting results, Fig. 10 illus-

rates the measured and forecasted confirmed cases COVID19 us-



A. Zeroual, F. Harrou and A. Dairi et al. / Chaos, Solitons and Fractals 140 (2020) 110121 9 

Table 3 

Validation Metrics for confirmed cases COVID19 forecasting using RNN, LSTM, BiLSTM, GRU,and VAE models. 

Country Model RMSE MAE MAPE EV RMSLE 

Italy RNN 1,070,474 1,062,061 4519 0201 00022 

GRU 113,775 1,130,957 4813 0314 00025 

LSTM 1,054,089 1,046,257 4452 0267 00021 

BiLSTM 1,041,374 1,033,467 4398 0269 00021 

VAE 1,386,225 1,385,829 5901 0951 00033 

Spain RNN 1,683,011 167,719 6944 0272 00052 

GRU 1,795,678 1,791,683 7419 0467 0006 

LSTM 1,254,449 1,247,959 5166 0396 00028 

BiLSTM 1,194,711 1,187,629 4916 0372 00026 

VAE 5,315,748 5,288,172 2,19 0891 00005 

France RNN 1,287,786 1,279,681 6827 0224 00051 

GRU 1,204,139 1,196,438 6383 0311 00044 

LSTM 1,085,008 1,075,795 5738 0258 00036 

BiLSTM 1,168,893 1,160,923 6193 0308 00041 

VAE 3,688,083 3,522,353 1,88 0554 00004 

China RNN 1,252,034 1,250,442 1485 0095 00002 

GRU 1,085,698 1,083,975 1287 0151 00002 

LSTM 101,482 1,013,002 1203 0163 00001 

BiLSTM 1,205,955 1,204,413 1,43 0156 00002 

VAE 11,103 107,873 0128 0843 0 

Australia RNN 39,928 397,443 5,47 0279 00032 

GRU 295,978 293,738 4042 0349 00017 

LSTM 327,123 325,203 4476 0383 00021 

BiLSTM 335,033 333,098 4584 0363 00022 

VAE 18,732 17,186 0236 0952 0 

USA RNN 5,227,287 5,136,497 26,373 0208 00967 

GRU 4,369,108 4,240,145 21,697 0066 00635 

LSTM 1,129,183 1,123,909 58,008 0 07589 

BiLSTM 4,330,228 4,194,141 21,451 0024 00621 

VAE 4,079,244 3,976,682 2,04 0993 00004 

Table 4 

Validation Metrics for recovered cases COVID19 forecasting. 

Country Model RMSE MAE MAPE EV RMSLE 

Italy RNN 4,006,731 3,950,381 23,734 0103 00754 

GRU 3,892,321 382,867 22,989 0017 00705 

LSTM 3,887,027 3,822,325 22,949 0002 00703 

BiLSTM 3,886,682 3,821,869 22,946 0 00702 

VAE 2,273,616 2,250,268 13,537 0789 00163 

Spain RNN 9,460,326 9,460,326 6291 1 00042 

GRU 2,221,248 2,221,248 1477 1 00002 

LSTM 368,623 368,623 0245 1 0 

BiLSTM 1,850,373 1,850,373 1,23 1 00002 

VAE 4,022,143 4,022,143 2675 1 00007 

France RNN 100,203 9,943,735 14,594 0229 00253 

GRU 8,467,965 8,380,523 12,294 0257 00176 

LSTM 7,880,727 7,771,507 11,395 0138 0015 

BiLSTM 785,049 773,904 11,347 0124 00149 

VAE 3,946,933 3,898,492 5,72 0808 00031 

China RNN 856,465 855,913 1078 0,2 00001 

GRU 957,498 957,048 1205 0269 00001 

LSTM 784,579 784,043 0987 0287 00001 

BiLSTM 1,031,264 103,086 1298 0295 00002 

VAE 415,008 414,998 0522 0993 0 

Australia RNN 630,847 626,654 9,32 0213 00097 

GRU 48,319 477,924 7105 0245 00055 

LSTM 35,956 35,174 5225 0,17 0003 

BiLSTM 429,146 423,132 6289 0235 00043 

VAE 972,236 972,169 1448 0,98 00183 

USA RNN 2,301,648 2,256,944 44,603 0114 03612 

GRU 2,252,458 220,556 43,556 0091 03399 

LSTM 2,227,272 2,175,034 42,894 0 0329 

BiLSTM 2,227,271 2,175,034 42,894 0 0329 

VAE 1,194,272 1,139,793 22,338 0447 0042 

i  

d  

p  

p  

c  

o  

c  

v  

e  

t  

f  

S  
ng RNN, LSTM, BiLSTM, GRU, and VAE based only on the testing

ata of 17 days. As it can be observed in Fig. 10 , the method VAE

rovides better forecasting of COVID-19 confirmed cases in com-

arison to the other considered models for almost all considered

ountries except in Italy. To assess quantitatively the performances

f the five forecasting methods in one-ahead forecasting of new
onfirmed cases the metrics MAE, RMSE, MAPE, EV, and RMSLE

alues have been computed based on the testing measurements for

ach country and summarized in Table 3 . It can be easily seen that

he VAE model outperformed the other models by providing good

orecasting performance with lower RMSE, MAE, MAPE and RM-

LE, and EV values colorer to 1 explaining most of the variance in
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Fig. 11. Real and forecasted recovered COVID19 cases using RNN, LSTM, BiLSTM, GRU and VAE models (training and testing dataset) for (a) Italy, (b) France, (c) Spain, (d) 

China, (e) USA and (f) Australia. 
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the data, for all data countries except Italy. For illustration, the VAE

model achieved MAPE values of 5.90%, 2.19%, 1.88%, 0.128%, 0.236%,

and 2.04% for COVID-19 data form Italy, Spain, France, China, Aus-

tralia, and the USA, respectively. It should be noted that this is the

first time that the VAE model is applied for COVID-19 time series

forecasting. Moreover, results show that the VAE method for fore-

casting new COVID-19 confirmed cases has superior performance.

For Italy data, It is not obvious to tell which model is absolutely

better on the basis of the RMSE, MAE, MAPE, and EV values. In-

deed, the VAE model possesses a desirable feature that permits to

track the trend of COVID-19 ( Fig. 10 ) and explain the most variabil-

ity in the data (i.e., EV = 0.951 for Italy), however, it is penalized by

larger RMSE compared to the other models. Thus, the efficiency of

the VAE model for COVID-19 forecasting is promising and mani-

fested. This fact is maybe due to the capacity of the VAE in deal-

ing with small data compared to the other recurrent models (RNN,

L STM, Bi-L STM, and GRU) which may need more lengthy data to

extract relevant variability in time series data. On the other hand,

RNN and its improved versions L STM, BiL STM, and GRU provide

relatively moderate forecasting performance in terms of the evalu-

ation metrics (RMSE, RMSE, MAPE, and RMSEL) and perform very

poorly in terms of explained variance. This may be explained by

the lack of a good amount of training data needed to capture the

COVID-19 data dynamics. 
.5. Forecasting new recovered cases 

As for the new confirmed cases, we applied the five deep learn-

ng models to forecast the newly recovered cases. Fig. 11 dis-

lays the forecasting results of the recovered COVID-19 cases on

he six considered countries using RNN, LSTM, BiLSTM, GRU, and

AE based forecasting models. The forecasting results of the RNN,

 STM, BiL STM, GRU, and VAE based models follow the overall trend

f the recorded recovered COVID-19 cases, indicating that the NN-

ased models can capture the time-dependent in the recovered

OVID-19 data. Fig. 12 presents the forecasted recovered cases us-

ng RNN, LSTM, BiLSTM, GRU, and VAE models with the actual data

rom June 1st to June 17, 2020. These algorithms provide promis-

ng forecasting of the number of recovered cases in the six consid-

red countries. This fact is due to their high capability to model

on-linear and time-dependent data. Furthermore, the results re-

eal the potential in using deep learning models even in the pres-

nce of small data. Similar conclusions hold true for forecasting re-

overed COVID-19 time-series data, where the VAE again performs

etter among all the other models. 

The performance of RNN, L STM, BiL STM, GRU, and VAE models

n terms of MAE, RMSE, MAPE, EV, and RMSLE when applied to

he recovered COVID-19 data from six countries are summarized

n Table 4 . The results confirmed the superiority of the VAE mod-
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Fig. 12. Measured and forecasted recovered COVID19 cases from 14 April to 21 April 2020 using RNN, LSTM, BiLSTM, GRU and VAE for (a) Italy, (b) France, (c) Spain, (d) 

China, (e) USA and (f) Australia. 
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f  
ls compared to the other models ( Table 4 ). The VAE can capture

lmost all variability in data and provide more accurate forecast-

ng in comparison to the other RNN-based models. All other mod-

ls perform moderate forecasting performance in terms of RMSE,

AE, MAPE, and RMSLE and show poor performance in terms of

xplained variance. This is maybe due to their need for more data

n the training to capture the dynamics of COVID-19. The worst

odel is RNN because of its simplicity and followed by its ex-

ended versions of LSTM, Bi-LSTM, and GRU models. 

Overall, this study provided a comparison between deep learn-

ng models in forecasting the number of confirmed and recov-

red COVID-19 cases recorded from six different countries. This

ork highlights the potential of RNN, LSTM, BiLSTM, GRU, and VAE

ethods to be used for forecasting COVID-19 cases, even when ap-

lied to small COVID-19 training data sets. Essentially, these deep

earning models are able to capture time-variant properties and

elevant patterns of past data and forecast the future tendency of

OVID-19 time-series data. The forecasting results show the supe-

iority of the VAE model by achieving higher accuracy compared to

he other models for one-step forecasting. This can be attributed

o the great capacity of the VAE in capturing process nonlinearity

nd dealing with small times series data. Compared to the other

erein forecasting models, the VAE presents the advantage of the

ower dimensionality because of using reduced hidden units num-

er. This last permits the extraction of the discriminative features.

t  
enerally speaking, there is no obvious answer here that one of

hem is better than the other, but for this application, the VAE

odel outperforms the other herein forecasting approaches used

or the COVID-19 prediction. 

. Conclusion 

The COVID-19 pandemic is exponentially spreading over the

orld, and the healthcare systems in some high impacted coun-

ries, such as Italy, Spain, France, and the United States are already

vercrowded. Accurately forecasting the number of confirmed and

ecovered cases provides pertinent information to governments

nd decision-makers about the expected situation and the needed

easures to impose. Also, forecasting information can be useful

or motivating the wider public to consider the imposed measures

or down slowing the spread of this virus. In this study, NN-based

odels including RNN, L STM, BiL STM, GRU, and VAE have been

pplied to the real-time forecasts of the daily confirmed and re-

overed COVID-19 cases in six different countries. This choice is

ighly motivated by the extended capacity of deep learning mod-

ls in capturing process nonlinearity and their flexibility in model-

ng time-dependent data. Seventeen days-ahead forecasts are pro-

ided based on historical data of 148 days since January 22, 2020,

or six countries namely Italy, Spain, France, China, USA, and Aus-

ralia. The performance of each model has been verified in terms
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of RMSE, MAE, MAPE, EV and RMSLE. Results demonstrate that the

VAE achieved better forecasting performance in comparison to all

other models. 
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